September 11, 2017

Open Notes QUIZ on

Translate and Combine Like Terms

Graded Classwork:

Attempt to answer properties examples using the Algebraic Properties List.

		wutupitation
Associative	(a + b) + c = a + (b + c)	(ab)c = a(bc)
Commutative	a + b = b + a	ab = ba
Identity	<i>a</i> + 0 = <i>a</i>	$a \cdot 1 = a$
Inverse	a + (-a) = 0	$a \cdot \frac{1}{a} = 1$ if $a \neq$
Distributive	a(b+c) = ab + ac and	d $ab + ac = a(b + c)$

September 11, 2017

Property	Equality	Inequality
Multiplicative	<i>a</i> · 0 = 0	
roperty of Zero		
Zero Product	If <i>ab</i> = 0, then <i>a</i> = 0 or <i>b</i> = 0.	
Reflexive	a = a	
Symmetric	If $a = b$, then $b = a$.	
Transitive	If $a = b$ and $b = c$, then $a = c$.	If $a > b$ and $b > c$, then $a > c$.
		If $a < b$ and $b < c$, then $a < c$.
	1	I

Property	Equality	Inequality		
Addition	If $a = b$, then $a + c = b + c$.	If $a < b$, then $a + c < b + c$.		
		If $a > b$, then $a + c > b + c$.		
Subtraction	If <i>a</i> = <i>b</i> , then <i>a</i> - <i>c</i> = <i>b</i> - <i>c</i> .	If <i>a</i> < <i>b</i> , then <i>a</i> - <i>c</i> < <i>b</i> - <i>c</i> .		
		If $a > b$, then $a - c > b - c$.		
	If $a = b$, then $ac = bc$.	If $a < b$ and $c > 0$, then $ac < bc$.		
Multiplication		If <i>a</i> < <i>b</i> and <i>c</i> < 0, then <i>ac</i> > <i>bc</i> .		
Multiplication		If $a > b$ and $c > 0$, then $ac > bc$.		
		If $a > b$ and $c < 0$, then $ac < bc$.		
	If $a = b$ and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$.	If $a \le b$ and $c \ge 0$ then $\frac{a}{c} \le \frac{b}{c}$		
Division				
		If $a < b$ and $c < 0$, then $\frac{a}{c} > \frac{b}{c}$.		
			If $a > b$ and $c > 0$, then $\frac{a}{c} > \frac{b}{c}$.	
		If $a > b$ and $a < 0$ then $a > b$		
		$a = \frac{1}{c} = \frac{1}{c}$		
		Substitution	If <i>a</i> = <i>b</i> , then <i>b</i> can be substitute	d for <i>a</i> in any equation or inequality

What do these properties allow us to do?

Associative: When adding or multiplying numbers it does not matter how we <u>Group</u> them. Remember . . . Your <u>Group</u> of friends is who you <u>associate</u> with.

Commutative: When adding or multiplying numbers the order is not important. When you <u>commute</u> from home to school you change <u>locations</u>.

Distributive: When distributing, you are <u>multiplying</u> the number <u>outside</u> the parentheses with all the terms <u>inside</u> the parentheses. The parentheses <u>disappear</u> when this happens!

lentity: Adding <u>zero</u> to a number does not change its identity. Multiplying by <u>one</u> does not change its identity. Inverse: Adding a number with the <u>opposite</u> of that number will always EQUAL ZERO. Multiplying a number with its <u>reciprocal</u> will always EQUAL ONE. $\frac{1}{5} \cdot \frac{5}{1} = 1$ $\frac{2}{3} \cdot \frac{3}{2} = 1$ $3 \cdot \frac{1}{5} = 1$ Aultiplicative Property of Zero: Multiplying a number by _zero_ will always equal _zero_ Reflexive: Something equal to <u>itself</u>. Think of a reflection in a mirror. Nothing changes. Symmetric: What was on the <u>left</u> side of the equation is now on the <u>right</u>. What was on the <u>right</u> side of the equation is now on the <u>left</u>. The order of the operations does not change, just the side the information is on changes. symmetric Commutative Ifh+s=m+F h+s=s+hwhen m+F=h+S

Transitive: If the <u>1st</u> amount equals the <u>2nd</u> amount, and the <u>2nd</u> amount equals the <u>3rd</u> amount, then the <u>1st</u> will also equal the <u>3rd</u>. $\rightarrow Q = b$ and b = CAddition: <u>Adding</u> the same number to each side of and = Cequation does not change the equation. Subtraction: <u>Subtracting</u> the same number from each side of an equation does not change the equation. Multiplication: <u>Multiplying</u> each side of an equation does not change the equation. Division: <u>Dividing</u> each side of an equation by the same nonzero_ number does not change the equation. Substitution: You can <u>replace</u> an expression with another expression or real number that has the same <u>value</u>. (Combine Like Terms is an example of using substitution)

Name th -Commu -Identity -Distribu	ee property illustrated by each statement. stative (of multiplication or addition) y (of multiplication or addition) utive -Zero Property -Reflexive -Symmetric -Transitive
1.)	$2(m+5) = 2m+10$ $P_i = 100$
2.)	q=q Reflexic
3.)	2+2=4 and $4=3+1$, Trans the then $2+2=3+1$.
4.)	6.0=0 Zero property
5.)	(3+2)+4=3+(2+4) Associative of addition

September 11, 2017

10.)
$$9 \cdot (3 \cdot x) = (9 \cdot 3) \cdot x$$
 Associative of multiplication
11.) $1 \cdot b = b$ Multiplicative identity
12.) If $2(3) = 6$, then $6 = 2(3)$. Symmetric
13.) $t + (-t) = 0$ additive inverse

6.)
$$6+7=7+6$$
 Commutative of
addition
7.) $k+0=k$ additive identity
8.) $5 \cdot \frac{1}{5}=1$ Multiplicative
inverse
9.) $8(7x) = (7x)8$ Commutative of
multiplication

