Algebra 1 SOL Released Questions:

Writing Linear Equations

Which equation represents the horizontal line passing through (7, 5)?

A
$$x = 5$$

B
$$y = 5$$

c
$$x = 7$$

D
$$y = 7$$

201

A representation of a function is shown.

$$f(x) = -4x + 2$$

What are the x-intercept and the y-intercept of this function?

- **A** x-intercept of (0, -2) and y-intercept of $\left(-\frac{1}{2}, 0\right)$
- **B** x-intercept of (0, 2) and y-intercept of $\left(\frac{1}{2}, 0\right)$
- **C** x-intercept of $\left(-\frac{1}{2}, 0\right)$ and y-intercept of (0, -2)
- **D** x-intercept of $\left(\frac{1}{2}, 0\right)$ and y-intercept of (0, 2)

In which table do the values represent the rule shown?

The square of the sum of x and 5 is equal to y.

Which describes the graph of g(x) = -3x + 5?

F A line with a slope of $^-3$ and a y-intercept of $^-5$.

G A line with a slope of $^{-3}$ and a y-intercept of 5.

H A line with a slope of 3 and a *y*-intercept of ⁻5.

J A line with a slope of 3 and a y-intercept of 5.

Which is an equation of the line that passes through the points (5,15) and (10,20)?

F
$$y = x + 10$$

G
$$y = x - 30$$

H
$$y = x + 30$$

J
$$y = x + 15$$

Which equation fits the pattern in the table?

x	у
2	3
4	4
6	5
8	6

- **A** $y = \frac{1}{3}x + 3$
- **B** $y = \frac{1}{2}x + 2$
- $\mathbf{C} \qquad y = x + 1$
- **D** y = 2x 1

Line l has slope 2 and goes through (1, 3). Which is one form of the equation for line l?

- **A** y = x + 2
- **B** y = 2x + 1
- **C** y = 3x + 2
- **D** y = 2x + 5

What are the x- and y-intercepts of the line with equation 4x + 5y = 40?

- A x-intercept 10, y-intercept 8
- B x-intercept 8, y-intercept 10
- C x-intercept -10, y-intercept -8
- D x-intercept -8, y-intercept -10

The points in the table lie on the graph of a linear function.

x	1	2	3	4	5
у	1	4	7	10	13

Which could be the function?

- $\mathbf{F} \quad y = x$
- **G** y = 2x 1
- **H** y = 3x 2
- **J** y = 4x 3

Which is an equation for the line with slope = $\frac{1}{2}$ and y-intercept of 3?

- **F** $y = -3x + \frac{1}{2}$
- **G** $y = 3x + \frac{1}{2}$
- **H** $y = \frac{1}{2}x + 3$
- **J** $y = \frac{1}{2}x 3$

Which is an equation for the line that passes through the origin and has a slope of $\frac{3}{5}$?

- $\mathbf{A} \quad \mathbf{y} = \frac{3}{5}$
- $\mathbf{B} \quad x = \frac{3}{5}$
- $\mathbf{c} \quad y = x$
- $\mathbf{p} \quad y = \frac{3}{5}x$

Which is an equation for the line that passes through the points (3, 0) and (0, 2)?

$$\mathbf{A} \quad y = \frac{3}{2}x + 2$$

$$y = \frac{-2}{3}x + 2$$

$$C \quad y = \frac{2}{3}x + 3$$

$$\mathbf{p} \ \ y = \frac{3}{2}x + 3$$

Which is an equation for the line with a slope of $\frac{1}{2}$ that passes through the origin?

$$\mathbf{F} \quad y = \frac{1}{2}x$$

$$\mathbf{G} \quad \mathbf{y} = 2\mathbf{x}$$

$$\mathbf{H} \quad y = \frac{1}{2}$$

$$\mathbf{J} \quad x = 0$$

Which equation is the slope-intercept form of

$$-x + 6y = 12$$
?

$$\mathbf{F} \quad \mathbf{y} = \frac{1}{6}\mathbf{x} + 2$$

$$G \quad y = \frac{-1}{6}x + 2$$

$$\mathbf{H} \quad x = 6y - 12$$

J
$$6y = 12 + x$$

What is the y-intercept of

$$4x + 8y = 12$$
?

A 3

$$\mathbf{B} = \frac{3}{2}$$

Which is an equation for the line which contains (3, 4) and the origin?

$$\mathbf{A} \quad y = \frac{3}{4}x$$

$$\mathbf{B} \quad \mathbf{y} = \frac{4}{3}\mathbf{x}$$

$$\mathbf{C} \quad y = 4x + 3$$

$$\mathbf{p} \quad \mathbf{v} = 3x + 4$$

Which is an equation of the line with slope $\frac{2}{3}$ that passes through the point (4, -1)?

$$y = \frac{1}{4}x + \frac{2}{3}$$

$$y = -4x + \frac{2}{3}$$

$$\mathbf{H} \quad y = \frac{2}{3}x - \frac{5}{3}$$

$$y = \frac{2}{3}x - \frac{11}{3}$$

x	-1	0	1	2
y	-3	-1	1	3

Which equation fits the data in the table?

$$\mathbf{A} \quad \mathbf{y} = \mathbf{x} - \mathbf{2}$$

$$\mathbf{B} \quad \mathbf{y} = 2\mathbf{x} - 1$$

$$c \quad v = 3x - 3$$

$$p y = x + 1$$

x	-2	0	2	4
у	3	2	1	0

Which equation fits the data in the table?

A
$$y = \frac{x}{2} + 2$$

$$\mathbf{B} \quad y = x + 3$$

$$\mathbf{C} \quad \mathbf{y} = 2\mathbf{x} - 3$$

$$y = \frac{x}{2} + 2$$

Which is an equation for the line that contains the points (-3, 5) and (1, -3)?

A
$$y = x + 2$$

B
$$y = -2x - 1$$

$$C \quad y = -\frac{1}{2}x - \frac{3}{2}$$

$$\mathbf{D} \quad \mathbf{y} = \frac{3}{2}\mathbf{x} - \frac{9}{2}$$

x	у
⁻ 2	-11
2	1
4	7
0	⁻ 5

Which equation is true for all the values in the table?

$$y = x - 9$$

$$G y = x - 5$$

$$\mathbf{H} \quad y = 3x - 5$$

$$\mathbf{J} \quad \mathbf{y} = 2\mathbf{x} - 7$$

The equation of the line that contains the points (-8, 1) and (0, -5) is —

$$\mathbf{A} \quad y = \frac{3}{4}x + 7$$

$$\mathbf{B} \quad y = \frac{1}{2}x + 1$$

$$y = \frac{3}{4}x - 5$$

$$\mathbf{p} \ y = \frac{3}{4}x + 7$$

x -6 2 10 y 1 3 5

Which equation is satisfied by all the points in the table?

$$\mathbf{F} \quad x - 4y = 10$$

$$G \quad 4y - x = 10$$

$$\mathbf{H} \quad 7y - x = 20$$

$$y - 7y = 20$$

A line has a slope of -2 and contains the point (1, -1). Which is an equation of this line?

$$\mathbf{A} \quad \mathbf{y} = -2\mathbf{x} - \mathbf{1}$$

$$y = x + 2$$

$$y = -2x + 1$$

$$\mathbf{p} \quad \mathbf{v} = 2\mathbf{x} - 3$$

x	у
0	4
3	1
6	⁻ 2

Which equation most likely describes the relation indicated by the table?

$$y = x + 4$$

$$\mathbf{G} \quad \mathbf{y} = \mathbf{x} - \mathbf{2}$$

$$\mathbf{H} \ \ y = -x + 4$$

$$J v = -x - 8$$

Which is an equation for the line that passes through (0, 2) and (-2, 0)?

$$\mathbf{A} \quad \mathbf{y} = \mathbf{x}$$

$$\mathbf{B} \quad \mathbf{v} = \mathbf{x} + \mathbf{2}$$

$$y = -x - 2$$

$$y = x - 2$$

Which is an equation for the line that contains the points (-2, 3) and (2, -1)?

$$\mathbf{A} \quad \mathbf{y} = \mathbf{x} + \mathbf{5}$$

$$y = x - 3$$

$$y = -x + 1$$

$$\mathbf{p} \ \ y = -2x - 1$$

In which table are all the points represented by the equation

$$y = \frac{x}{4} + 2?$$

Which is an equation of a line that has a slope of $-\frac{1}{2}$ and contains the point (2, 3)?

$$\mathbf{A} \quad \mathbf{y} = 2x - \frac{1}{2}$$

$$\mathbf{B} \quad \mathbf{y} = -\frac{\mathbf{x}}{2} + \mathbf{4}$$

$$\mathbf{C} \quad \mathbf{y} = \frac{\mathbf{x}}{2} + 3$$

$$p y = 3x + 2$$